Counting Colorings on Cubic Graphs

Chihao Zhang
The Chinese University of Hong Kong

Joint work with Pinyan Lu (Shanghai U of Finance and Economics)
Kuan Yang (Oxford University)
Minshen Zhu (Purdue University)
For any $q \geq 3$, it is NP-hard to decide whether a graph is q-colorable
Counting Proper Colorings

• Counting is harder:

$\#P$-hard on cubic graphs for any $q \geq 3$[BDGJ99]
Approximate Counting
Approximate Counting

It is natural to approximate the number of proper colorings
Approximate Counting

It is natural to approximate the number of proper colorings

FPRAS/FPTAS

Compute \hat{Z} in $\text{poly}(G, \frac{1}{\varepsilon})$ time satisfying

$$(1 - \varepsilon)\hat{Z} \leq Z(G) \leq (1 + \varepsilon)\hat{Z}$$
Approximate Counting

It is natural to approximate the number of proper colorings

FPRAS/FPTAS

Compute \hat{Z} in $\text{poly}(G, \frac{1}{\varepsilon})$ time satisfying

$$(1 - \varepsilon)\hat{Z} \leq Z(G) \leq (1 + \varepsilon)\hat{Z}$$

Any polynomial-factor approximation algorithm can be boosted into an FPRAS/FPTAS [JVV 1986]
Problem Setting
Problem Setting

FPRAS can distinguish between zero and nonzero $Z(G)$
Problem Setting

FPRAS can distinguish between zero and nonzero $Z(G)$

Assume $q \geq \Delta + 1$,
Problem Setting

FPRAS can distinguish between zero and nonzero $Z(G)$

Assume $q \geq \Delta + 1$,

Decision: Easy
Problem Setting

FPRAS can distinguish between zero and nonzero $Z(G)$

Assume $q \geq \Delta + 1$,

Decision: Easy

Exact Counting: Hard
Problem Setting

FPRAS can distinguish between zero and nonzero $Z(G)$

Assume $q \geq \Delta + 1$,

Decision: Easy

Exact Counting: Hard

Approximate Counting: ?
Uniqueness Threshold
Uniqueness Threshold

\[q = \Delta \]

\{...\}
Uniqueness Threshold

\[q = \Delta \]
\[\left\{ \text{smaller tree} \right\} \]

\[q = \Delta + 1 \]
\[\left\{ \text{larger tree} \right\} \]
Uniqueness Threshold

\[q = \Delta \]
\{ \ldots \}

\[q = \Delta + 1 \]
\{ \ldots \}

The Gibbs measure is unique for \(q \geq \Delta + 1 \) [Jonasson 2002]
Two-Spin System
Two-Spin System

In (anti-ferromagnetic) two-spin system, the uniqueness threshold corresponds to the approximability threshold.
Two-Spin System

In (anti-ferromagnetic) two-spin system, the uniqueness threshold corresponds to the approximability threshold

\[\text{NP} \neq \text{RP} \]

Theorem. [Weitz06, Sly10, SS11, SST12, LLY12, LLY13] Assume \(\text{NP} \neq \text{RP} \), the partition function of anti-ferromagnetic two-spin system is approximable if and only if the Gibbs measure is unique.
Two-Spin System

In (anti-ferromagnetic) two-spin system, the uniqueness threshold corresponds to the approximability threshold

Theorem. [Weitz06, Sly10, SS11, SST12, LLY12, LLY13] Assume $\text{NP} \neq \text{RP}$, the partition function of anti-ferromagnetic two-spin system is approximable if and only if the Gibbs measure is unique.

Similar results in multi-spin system (Coloring)?
Counting and Sampling
Counting and Sampling

Theorem. [JVV 1986]

FPRAS \leftrightarrow FPAUS
Counting and Sampling

Theorem. [JVV 1986]

FPRAS \leftrightarrow FPAUS

fully-polynomial time approximate uniform sampler
Counting and Sampling

Theorem. [JVV 1986]

FPRAS \leftrightarrow FPAUS

fully-polynomial time approximate uniform sampler

It is natural to use Markov chains to design sampler
A Markov Chain to Sample Colorings
A Markov Chain to Sample Colorings

Colors { on red blue green purple }
A Markov Chain to Sample Colorings

Colors \{ \textcolor{yellow}{\bullet} \textcolor{red}{\bullet} \textcolor{green}{\bullet} \textcolor{blue}{\bullet} \textcolor{purple}{\bullet} \}
A Markov Chain to Sample Colorings

Colors \{ \bullet \bullet \bullet \bullet \ \bullet \}
A Markov Chain to Sample Colorings

Colors \{ \text{ \textcolor{yellow}{\textbullet} \textcolor{red}{\textbullet} \textcolor{green}{\textbullet} \textcolor{blue}{\textbullet} \textcolor{purple}{\textbullet} } \}
A Markov Chain to Sample Colorings

Colors \{ \textcolor{yellow}{\circ}, \textcolor{red}{\circ}, \textcolor{green}{\circ}, \textcolor{blue}{\circ}, \textcolor{purple}{\circ} \}

(One-site) Glauber Dynamics
A Markov Chain to Sample Colorings

Colors \{ \text{red, blue, green, purple} \}

(One-site) Glauber Dynamics

A uniform sampler when \(q \geq \Delta + 2 \)
Analysis of the Mixing Time
Analysis of the Mixing Time

Rapid mixing of the Glauber dynamics implies FPRAS for colorings
Analysis of the Mixing Time

Rapid mixing of the Glauber dynamics implies FPRAS for colorings

It is challenging to analyze the mixing time
Analysis of the Mixing Time

Rapid mixing of the Glauber dynamics implies FPRAS for colorings

It is challenging to analyze the mixing time

Relax the requirement to $q \geq \alpha \cdot \Delta + \beta$
Analysis of the Mixing Time

Rapid mixing of the Glauber dynamics implies FPRAS for colorings

It is challenging to analyze the mixing time

Relax the requirement to $q \geq \alpha \cdot \Delta + \beta$

Ideally, $\alpha = 1$ and $\beta = 2$. Current best, $\alpha = \frac{11}{6}$ [Vigoda 1999]
Analysis of the Mixing Time

Rapid mixing of the Glauber dynamics implies FPRAS for colorings

It is challenging to analyze the mixing time

Relax the requirement to \(q \geq \alpha \cdot \Delta + \beta \)

Ideally, \(\alpha = 1 \) and \(\beta = 2 \). Current best, \(\alpha = \frac{11}{6} \) [Vigoda 1999]

On cubic graphs, \(q = 5 \) \((= \Delta + 2)\) [BDGJ 1999]
\[q = \Delta + 1 \]
\[q = \Delta + 1 \]

When \(q = \Delta + 1 \), then chain is no longer ergodic
\[q = \Delta + 1 \]

When \(q = \Delta + 1 \), then chain is no longer ergodic

Colors \(\{ \textcolor{yellow}{\bullet} \textcolor{red}{\bullet} \textcolor{green}{\bullet} \textcolor{blue}{\bullet} \} \)
\[q = \Delta + 1 \]

When \(q = \Delta + 1 \), then chain is no longer ergodic

Colors \{ \textcolor{yellow}{\bigcirc}, \textcolor{red}{\bigcirc}, \textcolor{green}{\bigcirc}, \textcolor{blue}{\bigcirc} \}
\[q = \Delta + 1 \]

When \(q = \Delta + 1 \), then chain is no longer ergodic

Colors \{ \textcolor{yellow}{\bullet}, \textcolor{red}{\bullet}, \textcolor{green}{\bullet}, \textcolor{blue}{\bullet} \}
When \(q = \Delta + 1 \), then chain is no longer ergodic.

Colors \{ yellow, red, green, blue \}

Frozen!
\[q = \Delta + 1 \]

When \(q = \Delta + 1 \), then chain is no longer ergodic

Colors \{ \textcolor{yellow}{\circ}, \textcolor{red}{\circ}, \textcolor{green}{\circ}, \textcolor{blue}{\circ} \}

The method cannot achieve the uniqueness threshold
Recursion Based Algorithm
Recursion Based Algorithm

\[G = \]

\[
\begin{array}{c}
 \text{\hspace{1em}} \\
 \text{\hspace{1em}} \\
 \text{\hspace{1em}} \\
 \text{\hspace{1em}} \\
 \text{\hspace{1em}} \\
\end{array}
\]
Recursion Based Algorithm

\[G = \]

\[\{ \text{node1, node2, node3, node4} \} \]
Recursion Based Algorithm

\[G = \]

\[\Pr_G [\circ = \bullet] = \frac{(1 - \Pr_{\bullet} [\otimes = \bullet])^2}{\sum \in \{\bullet, \circ, \circ, \circ\} (1 - \Pr_{\bullet} [\otimes = \circ])^2}. \]
Recursion Based Algorithm

\[
G = \begin{array}{c}
\circ \\
\quad \bullet \\
\quad \bullet \\
\quad \bullet \\
\quad \bullet \\
\end{array}
\]

\[
\text{Pr}_G [\circ = \bullet] = \frac{(1 - \text{Pr}_\otimes [\otimes = \bullet])^2}{\sum_{\bullet \in \{\bullet, \cdot, \circ, \triangle, \square\}} (1 - \text{Pr}_\otimes [\otimes = \bullet])^2}.
\]

This recursion can be generalized to arbitrary graphs

\[
x = f_d(x_{11}, \ldots, x_{1q}; x_{21}, \ldots x_{2q}; \ldots, x_{d1}, \ldots, x_{dq})
\]
Recursion Based Algorithm

\[G = \{ \text{nodes} \} \]

Computing the marginal is equivalent to counting colorings [JVV 1986]

\[\sum_{\bullet \in \{\text{nodes}\}} (1 - \Pr[\text{nodes}]) \]

This recursion can be generalized to arbitrary graphs

\[x = f_d(x_{11}, \ldots, x_{1q}; x_{21}, \ldots x_{2q}; \ldots, x_{d1}, \ldots, x_{dq}) \]
Correlation Decay
Correlation Decay

Faithfully evaluate the recursion requires $\Omega((\Delta q)^n)$ time
Correlation Decay

Faithfully evaluate the recursion requires $\Omega\left((\Delta q)^n\right)$ time

Truncate the recursion tree at level $\Theta(\log n)$
Correlation Decay

Faithfully evaluate the recursion requires $\Omega((\Delta q)^{n})$ time

Truncate the recursion tree at level $\Theta(\log n)$
Correlation Decay
Correlation Decay

\[q = \Delta + 1 \]
Correlation Decay

$q = \Delta + 1$

Uniqueness Condition: the correlation between the root and boundary decays.
Correlation Decay

$q = \Delta + 1$

Uniqueness Condition: the correlation between the root and boundary decays.

Uniqueness threshold suggests $q \geq \Delta + 1$ is sufficient for CD to hold.
Sufficient Condition
Sufficient Condition

Very hard to rigorously establish the decay property
Sufficient Condition

Very hard to rigorously establish the decay property

A sufficient condition is

\[|f_d(x) - f_d(\tilde{x})| \leq \gamma \cdot \|x - \tilde{x}\|_\infty \]

for some \(\gamma < 1 \)
Sufficient Condition

Very hard to rigorously establish the decay property

A sufficient condition is

$$|f_d(x) - f_d(\tilde{x})| \leq \gamma \cdot \|x - \tilde{x}\|_\infty$$

for some $\gamma < 1$

Based on the idea, the best bounds so far is

$q > 2.581\Delta + 1$ [LY 2013]
One Step Contraction
One Step Contraction

Establish $\gamma \leq \|\nabla f_d(x)\|_1 < 1$ for $x = (x_1, \ldots, x_d) \in D$

The domain D is all the possible values of marginals.
One Step Contraction

Establish \(\gamma \leq \|\nabla f_d(x)\|_1 < 1 \) for \(x = (x_1, \ldots, x_d) \in D \)

The domain \(D \) is all the possible values of marginals.

\(D \) is too complicated to work with

Introduce an upper bound \(u_i \) for each \(x_i \)

Work with the polytope \(P := \{ x \mid 0 \leq x_i \leq u_i \} \).
Barrier
Barrier

The relaxation does not change the result in two-spin system [SSY 2012; LLY 2012; LLY 2013]
Barrier

The relaxation does not change the result in two-spin system [SSY 2012; LLY 2012; LLY 2013]

This is no longer true for coloring
Barrier

The relaxation does not change the result in two-spin system [SSY 2012; LLY 2012; LLY 2013]

This is no longer true for coloring

It can be shown that for some $\xi > 0$, the one-step contraction does not hold for $q = (2 + \xi)\Delta$
The relaxation does not change the result in two-spin system [SSY 2012; LLY 2012; LLY 2013]

This is no longer true for coloring

It can be shown that for some $\xi > 0$, the one-step contraction does not hold for $q = (2 + \xi)\Delta$

To improve, one needs to find a better relaxation
General Recursion
General Recursion

$$\text{Pr}_{G,L} [c(v) = i] = \frac{\prod_{k=1}^{d} (1 - \text{Pr}_{G_v,L_k,i} [c(v_k) = i])}{\sum_{j \in L(v)} \prod_{k=1}^{d} (1 - \text{Pr}_{G_v,L_k,j} [c(v_k) = j])}$$
General Recursion

\[
\Pr_{G,L}[c(v) = i] = \frac{\prod_{k=1}^{d} (1 - \Pr_{G_{v},L_{k},i}[c(v_k) = i])}{\sum_{j \in L(v)} \prod_{k=1}^{d} (1 - \Pr_{G_{v},L_{k},j}[c(v_k) = j])}
\]

A vertex of degree \(d\) branches into \(d \times q\) subinstances
General Recursion

\[\Pr_{G,L}[c(v) = i] = \frac{\prod_{k=1}^{d} (1 - \Pr_{G,v,L_k,i}[c(v_k) = i])}{\sum_{j \in L(v)} \prod_{k=1}^{d} (1 - \Pr_{G,v,L_k,j}[c(v_k) = j])} \]

A vertex of degree \(d\) branches into \(d \times q\) subinstances

The subinstances corresponding to the first child are marginals on the same graph
Constraints
Constraints

\[x = f_d(x_{11}, \ldots, x_{1q}; x_{21}, \ldots x_{2q}; \ldots, x_{d1}, \ldots, x_{dq}) \]
Constraints

\[x = f_d(x_{11}, \ldots, x_{1q}; x_{21}, \ldots x_{2q}; \ldots, x_{d1}, \ldots, x_{dq}) \]

Analyze \(\nabla f_d \) on the hyperplane \(\sum_{i=1}^{q} x_{1i} = 1 \)
Constraints

\[x = f_d(x_{11}, \ldots, x_{1q}; x_{21}, \ldots x_{2q}; \ldots, x_{d1}, \ldots, x_{dq}) \]

Analyze \(\nabla f_d \) on the hyperplane \(\sum_{i=1}^{q} x_{1i} = 1 \)

Introduce the polytope \(P' := P \cap \{ x \mid \sum_{i=1}^{q} x_{1i} = 1 \} \)
Technical Issue
Technical Issue

In fact, we need to analyze an amortized function $\varphi \circ f_d$
Technical Issue

In fact, we need to analyze an amortized function \(\varphi \circ f_d \).

The constraint \(\sum_{i=1}^{q} x_{1i} = 1 \) breaks down in the new domain.
Technical Issue

In fact, we need to analyze an amortized function $\varphi \circ f_d$

The constraint $\sum_{i=1}^{q} x_{1i} = 1$ breaks down in the new domain

The use of potential function and domain restriction are not compatible
New Recursion
New Recursion

We have to work with the same polytope P
New Recursion

We have to work with the same polytope P

$$\text{Pr}_{G,L} [c(v) = i] = \frac{\prod_{k=1}^{d} (1 - \text{Pr}_{G_v,L_k,i} [c(v_k) = i])}{\sum_{j \in L(v)} \prod_{k=1}^{d} (1 - \text{Pr}_{G_v,L_k,j} [c(v_k) = j])}$$

with $\sum_{j \in [q]} \text{Pr}_{G_v,L_1,j} [c(v_1) = j] = 1$
New Recursion

We have to work with the same polytope P

$$
\Pr_{G,L} [c(v) = i] = \frac{\prod_{k=1}^{d} (1 - \Pr_{G_v,L_k,i} [c(v_k) = i])}{\sum_{j \in L(v)} \prod_{k=1}^{d} (1 - \Pr_{G_v,L_k,j} [c(v_k) = j])}
$$

with $\sum_{j \in [q]} \Pr_{G_v,L_1,j} [c(v_1) = j] = 1$

The constraint $\sum_{i=1}^{q} x_{1i} = 1$ is implicitly imposed if one further expand the first child with the same recursion.
New definition of one step recursion
New definition of one step recursion

The new recursion keeps more information
Cubic Graphs
Cubic Graphs

The new constraint is negligible when the degree is large
Cubic Graphs

The new constraint is negligible when the degree is large

It turns to be useful when $\Delta = 3$
Cubic Graphs

The new constraint is negligible when the degree is large.

It turns to be useful when $\Delta = 3$

The amortized analysis is very complicated even $\Delta = 3$
Cubic Graphs

The new constraint is negligible when the degree is large.

It turns to be useful when $\Delta = 3$.

The amortized analysis is very complicated even $\Delta = 3$.

We are able to establish CD property with the help of computer.
Cubic Graphs

The new constraint is negligible when the degree is large.

It turns to be useful when $\Delta = 3$.

The amortized analysis is very complicated even $\Delta = 3$.

We are able to establish CD property with the help of computer.

Theorem.
There exists an FPTAS to compute the number of proper four-colorings on graphs with maximum degree three.
Final Remark
Final Remark

The first algorithm to achieve the conjectured optimal bound in multi-spin system
Final Remark

The first algorithm to achieve the conjectured optimal bound in multi-spin system

It is possible to obtain FPTAS when $q = 5$ and $\Delta = 4$
Final Remark

The first algorithm to achieve the conjectured optimal bound in multi-spin system

It is possible to obtain FPTAS when $q = 5$ and $\Delta = 4$

More constraints?
Final Remark

The first algorithm to achieve the conjectured optimal bound in multi-spin system

It is possible to obtain FPTAS when $q = 5$ and $\Delta = 4$

More constraints?

Other ways to establish correlation decay