Interval-like Graphs and Digraphs

Pavol Hell, Simon Fraser University

Hong Kong Theory Day, January 6, 2017
Emphasis on obstruction characterizations

- Interval graphs
- Interval bigraphs and digraphs
- Bi-arc digraphs
- Circular arc graphs
Plan

Emphasis on obstruction characterizations

- Interval graphs
- Interval bigraphs and digraphs
- Bi-arc digraphs
- Circular arc graphs

Mentioning joint work with

- Arash Rafiey
- Tomás Feder
- Jing Huang
- Juraj Stacho
- Mathew Francis
Interval Graphs

Interval graph

Vertices v can be represented by intervals I_v, so that

$$v \sim w \iff I_v \cap I_w \neq \emptyset$$

Example

```
1
  2
  3
  4
```

```
1
  2
  3
  4
```

H
Interval Graphs

Algorithms

$O(m + n)$ recognition algorithms

Greedy $O(n)$ optimization algorithms

Gavril 1974, Rose-Tarjan-Lueker 1976
Algorithms

\[O(m + n) \] recognition algorithms

Greedy \(O(n) \) optimization algorithms

Gavril 1974, Rose-Tarjan-Lueker 1976

Applications

Food webs, resource allocation, genetics, etc.

Lekkerkerker-Boland 1962

H is an interval graph $\iff H$ has no induced subgraph from

\begin{itemize}
\item \begin{tikzpicture}
 \node (a) at (0,0) [circle,fill,inner sep=1pt] {};
 \node (b) at (1,0) [circle,fill,inner sep=1pt] {};
 \node (c) at (2,0) [circle,fill,inner sep=1pt] {};
 \node (d) at (0,1) [circle,fill,inner sep=1pt] {};
 \node (e) at (1,1) [circle,fill,inner sep=1pt] {};
 \node (f) at (2,1) [circle,fill,inner sep=1pt] {};
 \draw (a) -- (b) -- (c);
 \draw (d) -- (e) -- (f);
 \draw (a) -- (d);
 \draw (b) -- (e);
 \draw (c) -- (f);
\end{tikzpicture}

\item \begin{tikzpicture}
 \node (a) at (0,0) [circle,fill,inner sep=1pt] {};
 \node (b) at (1,0) [circle,fill,inner sep=1pt] {};
 \node (c) at (2,0) [circle,fill,inner sep=1pt] {};
 \node (d) at (0,1) [circle,fill,inner sep=1pt] {};
 \draw (a) -- (b);
 \draw (b) -- (c);
 \draw (c) -- (d);
\end{tikzpicture}

\item \begin{tikzpicture}
 \node (a) at (0,0) [circle,fill,inner sep=1pt] {};
 \node (b) at (1,0) [circle,fill,inner sep=1pt] {};
 \node (c) at (2,0) [circle,fill,inner sep=1pt] {};
 \node (d) at (0,1) [circle,fill,inner sep=1pt] {};
 \draw (a) -- (b);
 \draw (b) -- (c);
 \draw (c) -- (d);
 \draw (a) -- (d);
\end{tikzpicture}

\item \begin{tikzpicture}
 \node (a) at (0,0) [circle,fill,inner sep=1pt] {};
 \node (b) at (1,0) [circle,fill,inner sep=1pt] {};
 \node (c) at (2,0) [circle,fill,inner sep=1pt] {};
 \node (d) at (0,1) [circle,fill,inner sep=1pt] {};
 \draw (a) -- (b);
 \draw (b) -- (c);
 \draw (c) -- (d);
 \draw (a) -- (d);
 \draw (b) -- (d);
\end{tikzpicture}

\item \begin{tikzpicture}
 \node (a) at (0,0) [circle,fill,inner sep=1pt] {};
 \node (b) at (1,0) [circle,fill,inner sep=1pt] {};
 \node (c) at (2,0) [circle,fill,inner sep=1pt] {};
 \node (d) at (0,1) [circle,fill,inner sep=1pt] {};
 \draw (a) -- (b);
 \draw (b) -- (c);
 \draw (c) -- (d);
 \draw (a) -- (d);
 \draw (b) -- (d);
 \draw (c) -- (d);
\end{tikzpicture}
\end{itemize}
Interval Graphs

Lekkerkerker-Boland 1962

H is an interval graph $\iff H$ has no induced subgraph from

Any two joined by a path avoiding the neighbours of the third

Asteroidal triple (AT)
Lekkerkerker-Boland 1962

\(H\) is an interval graph \(\iff\) \(H\) has no induced subgraph from

Asteroidal triple (AT)

Any two joined by a path avoiding the neighbours of the third
Lekkerkerker-Boland 1962

H is an interval graph $\iff H$ has no induced subgraph from

```
... 

```

Asteroidal triple (AT)

Any two joined by a path avoiding the neighbours of the third

```
...

```
Lekkerkerker-Boland 1962

H is an interval graph $\iff H$ has no induced subgraph from

\begin{itemize}
 \item \[\cdots \]
 \item \[\cdots \]
 \item \[\cdots \]
 \item \[\cdots \]
 \item \[\cdots \]
\end{itemize}

Lekkerkerker-Boland 1962

H is an interval graph $\iff H$ has no AT or induced $C_k, k \geq 4.$
A Structural Characterization

Interval-like Graphs and Digraphs
A Structural Characterization

Lekkerkerker-Boland 1962

H is an interval graph $\iff H$ has no AT or induced C_4, C_5.

Pavol Hell, Simon Fraser University

Interval-like Graphs and Digraphs
A Structural Characterization

Lekkerkerker-Boland 1962

H is an interval graph $\iff H$ has no AT or induced C_4, C_5.

Kratsch-McConnell-Mehlhorn-Spinrad 2006

$O(m + n)$ certifying recognition algorithm (with these certificates)
An Ordering Characterization

Min-ordering

H is an interval graph

\iff

$V(H)$ can be linearly ordered by $<$ so that

$u \sim v, u' \sim v'$ and $u < u', v' < v \implies u \sim v'$
An Ordering Characterization

Min-ordering

H is an interval graph

\iff

$V(H)$ can be linearly ordered by $<$ so that

$u \sim v$, $u' \sim v'$ and $u < u'$, $v' < v \Rightarrow u \sim v'$

Dotted edge cannot be absent

Pavol Hell, Simon Fraser University | Interval-like Graphs and Digraphs
An Ordering Characterization

Min-ordering

H is an interval graph

\iff

$V(H)$ can be linearly ordered by $<$ so that

$u \sim v, u' \sim v' \implies \min(u, u') \sim \min(v, v')$

Dotted edge cannot be absent
An Ordering Characterization

Min-ordering

H is an interval graph

H has a min ordering, i.e., $V(H)$ can be linearly ordered by $<$ so that

$u \sim v, u' \sim v'$ and $u < u', v' < v \implies u \sim v'$

Proof of \implies : order by left endpoints

Pavol Hell, Simon Fraser University
Interval-like Graphs and Digraphs
An Obstruction to Min Ordering

Invertible pair

Dashed line = non-edge
A graph with an invertible pair cannot have a min ordering.
A graph with an invertible pair cannot have a min ordering.

```
0 -- 1
  
5 -- 2
  
4 -- 3

3 -- 4
0 -- 1

3 4 5 0 1 2 3
0 1 2 3 4 5 0
```

Pavol Hell, Simon Fraser University
Interval-like Graphs and Digraphs
A graph with an invertible pair cannot have a min ordering.
C_6 has an invertible pair
C_6 has an invertible pair

Pavol Hell, Simon Fraser University
Interval-like Graphs and Digraphs
An Obstruction to Min Ordering

\[C_6 \text{ has an invertible pair} \]

Pavol Hell, Simon Fraser University
Interval-like Graphs and Digraphs
The following statements are equivalent

1. G is an interval graph
2. G has a min ordering
3. G has no invertible pair
4. G has no AT or induced C_4 or C_5

Obstruction Theorems

The following statements are equivalent

1. G is an interval graph
2. G has a min ordering
3. G has no invertible pair
4. G has no AT or induced C_4 or C_5

Shown: 1 \implies 2, 2 \implies 3, and 4 \implies 1

To show: 3 \implies 4
Cycles C_4, C_5 and all AT have an invertible pair
Interval graphs are reflexive (have all loops)

Observation

Pavol Hell, Simon Fraser University
Interval-like Graphs and Digraphs
Cycles C_4, C_5 and all AT have an invertible pair.
Cycles C_4, C_5 and all AT have an invertible pair.
Cycles C_4, C_5 and all AT have an invertible pair
Cycles C_4, C_5 and all AT have an invertible pair
Cycles C_4, C_5 and all AT have an invertible pair
Cycles C_4, C_5 and all AT have an invertible pair.
Cycles C_4, C_5 and all AT have an invertible pair
Cycles \(C_4, C_5 \) and all AT have an invertible pair

\[
\begin{align*}
& a \\
& b
\end{align*}
\]
Cycles C_4, C_5 and all AT have an invertible pair

Pavol Hell, Simon Fraser University
Interval-like Graphs and Digraphs
Cycles C_4, C_5 and all AT have an invertible pair
Cycles C_4, C_5 and all AT have an invertible pair.
Cycles C_4, C_5 and all AT have an invertible pair
Cycles C_4, C_5 and all AT have an invertible pair
Cycles C_4, C_5 and all AT have an invertible pair
Cycles C_4, C_5 and all AT have an invertible pair
A New Characterization

H is an interval graph \iff it has no invertible pair

Feder+H+Huang+Rafiey 2012
Obstructions to Interval Graphs

Three related characterizations

<table>
<thead>
<tr>
<th>Obstruction Type 1</th>
<th>Obstruction Type 2</th>
<th>Obstruction Type 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pavol Hell, Simon Fraser University

Interval-like Graphs and Digraphs
Bipartite graphs with red vs blue vertices

Interval bigraph

Representable by real intervals I_r, J_b (for r red and b blue)

$r \sim b \iff I_r \cap J_b \neq \emptyset$

Sen-Das-Roy-West 1989

No obstruction characterizations, recognition $O(n^{15})$

Mueller 1997

Faster algorithms claimed by Rafiey 2013 and by Das 2013
Bipartite graphs with red vs blue vertices

Interval bigraph

Representable by real intervals I_r, J_b (for r red and b blue)

\[r \sim b \iff I_r \cap J_b \neq \emptyset \]
Bipartite graphs with red vs blue vertices

Interval bigraph

Representable by real intervals I_r, J_b (for r red and b blue)

$$r \sim b \iff I_r \cap J_b \neq \emptyset$$

1 2 4 3 5

1 3 5

2 4

Sen-Das-Roy-West 1989

No obstruction characterizations, recognition $O(n^{15})$

Mueller 1997

Faster algorithms claimed by Rafiey 2013 and by Das 2013
Bigraphs

Bipartite graphs with red vs blue vertices

Interval bigraph

Representable by real intervals I_r, J_b (for r red and b blue)

$$r \sim b \iff I_r \cap J_b \neq \emptyset$$

Sen-Das-Roy-West 1989

No obstruction characterizations, recognition $O(n^{15})$ Mueller 1997

Faster algorithms claimed by Rafiey 2013 and by Das 2013
Min ordering of a bigraph H

A linear ordering $<$ of $V(H)$ so that

$$u \sim v, \ u' \sim v' \text{ and } u < u', \ v' < v \implies u \sim v'$$
Min ordering of a bigraph H

A linear ordering $<$ of $V(H)$ so that

$$u \sim v, u' \sim v' \text{ and } u < u', v' < v \implies u \sim v'$$
Two geometric representations

H has a min ordering $\iff \overline{H}$ is a circular arc graph
Two geometric representations

H has a min ordering $\iff \overline{H}$ is a circular arc graph

H has a min ordering $\iff H$ is a 2-directional ray graph

Feder, H and Huang 1999

Shrestha, Tayu, and Ueno 2010, H+Rafiey 2011
Two Directional Ray Graphs

A 2DR graph

Intersection graph of a family of UP and RIGHT rays

Pavol Hell, Simon Fraser University

Interval-like Graphs and Digraphs
Obstruction Characterizations

A bigraph H is a 2DR graph \iff does not contain an induced cycle or any subgraph from Trotter and Moore 1976.
A bigraph H is a 2DR graph \iff

- does not contain an induced subgraph from the list
- H has no induced $C_{>4}$ and no edge-asteroid

Trotter and Moore 1976; H and Huang 2004; H and Rafiey 2011; Shrestha, Tayu, and Ueno 2010
A bigraph H is a 2DR graph \iff does not contain an induced subgraph from the list

- H has no induced C_4 and no edge-asteroid
- H has no invertible pair

Trotter and Moore 1976; H and Huang 2004; H and Rafiey 2011; Shrestha, Tayu, and Ueno 2010
Two Directional Ray Graphs

Similarities to interval graphs

- similar geometric representations
- similar obstructions
- similar ordering characterization

\(O(n^2)\) recognition
Two Directional Ray Graphs

Similarities to interval graphs
- similar geometric representations
- similar obstructions
- similar ordering characterization

$O(n^2)$ recognition

Open
An $O(m + n)$ recognition algorithm?
2DR graphs are a better analogue of interval graphs than interval bigraphs.
2DR graphs are a better analogue of interval graphs than interval bigraphs

2DR graphs are more general than interval bigraphs

- H is a 2DR graph $\iff \overline{H}$ is a circular arc graph
- H is an interval bigraph $\iff \overline{H}$ is a circular arc graph that can be represented without two arcs covering the circle

H and Huang 2004
An interval digraph

Vertices can be represented by pairs of intervals I_v, J_v, so that

$$v \rightarrow w \iff I_v \cap J_w \neq \emptyset$$

Example

![Diagram showing intervals $I_a, I_b, I_c, J_a, J_b, J_c$ and the digraph $a \rightarrow b \rightarrow c$]

Sen-Das-Roy-West 1989
An interval digraph

Vertices can be represented by pairs of intervals I_v, J_v, so that

$$v \rightarrow w \iff I_v \cap J_w \neq \emptyset$$

Example

Sen-Das-Roy-West 1989

No obstruction characterization; $O(n^{15})$ recognition Mueller 1997

Faster algorithms claimed by Rafiey 2013 and by Das 2013
A min ordering of H

$V(H)$ can be linearly ordered by $<$ so that

$$u \rightarrow v, \quad u' \rightarrow v' \quad \text{and} \quad u < u', \quad v' < v \quad \implies \quad u \rightarrow v'$$
A min ordering of H

$V(H)$ can be linearly ordered by $<$ so that

$u \rightarrow v, u' \rightarrow v'$ and $u < u', v' < v \implies u \rightarrow v'$
Reflexive Digraphs

A geometric representation

A reflexive digraph has has a min ordering \[\iff \] it is an adjusted interval digraph

Feder+H+Huang+Rafiey 2012

Adjusted interval digraphs

Vertices can be represented by pairs of adjusted intervals \(I_v, J_v \), so that \[v \rightarrow w \iff I_v \cap J_w \neq \emptyset \]

Pavol Hell, Simon Fraser University

Interval-like Graphs and Digraphs
A geometric representation

A reflexive digraph has a min ordering \(\iff \) it is an adjusted interval digraph

Feder + H + Huang + Rafiey 2012
Reflexive Digraphs

A geometric representation

A reflexive digraph has has a min ordering \iff it is an adjusted interval digraph

Feder++H+Huang+Rafiey 2012

Adjusted interval digraphs

Vertices can be represented by pairs of adjusted intervals I_v, J_v, so that

$v \rightarrow w \iff I_v \cap J_w \neq \emptyset$

Pavol Hell, Simon Fraser University

Interval-like Graphs and Digraphs
A reflexive digraph H an adjusted interval digraph if and only if
A reflexive digraph H is an adjusted interval digraph if and only if it has no invertible pair.
Adjusted Interval digraphs

Similarities to interval graphs
- similar geometric representations
- similar obstructions
- similar ordering characterization

$O(n^4)$ recognition algorithm

Open
A more efficient recognition algorithm?
Another similarity

Dichromatic number of H

The minimum number of acyclic parts H can be partitioned into...
Another similarity

Dichromatic number of H

The minimum number of acyclic parts H can be partitioned into

H is an adjusted interval digraph (without the loops)

Linear time algorithm for the dichromatic number

Hernandez-Cruz and H, 2014
Another similarity

<table>
<thead>
<tr>
<th>Dichromatic number of H</th>
</tr>
</thead>
<tbody>
<tr>
<td>The minimum number of acyclic parts H can be partitioned into</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>H is an adjusted interval digraph (without the loops)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear time algorithm for the dichromatic number</td>
</tr>
</tbody>
</table>

Hernandez-Cruz and H, 2014

<table>
<thead>
<tr>
<th>Directed cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each directed cycle in an adjusted interval digraph contains a digon</td>
</tr>
</tbody>
</table>
Another similarity

Dichromatic number of H

The minimum number of acyclic parts H can be partitioned into

H is an adjusted interval digraph (without the loops)

Linear time algorithm for the dichromatic number

Hernandez-Cruz and H, 2014

Directed cycles

Each directed cycle in an adjusted interval digraph contains a digon

[Diagram: Directed graph with nodes labeled a, b, c, I_a, J_a]
Another similarity

Dichromatic number of \(H \)

The minimum number of acyclic parts \(H \) can be partitioned into

\(H \) is an adjusted interval digraph (without the loops)

Linear time algorithm for the dichromatic number

Hernandez-Cruz and H, 2014

Directed cycles

Each directed cycle in an adjusted interval digraph contains a digon

\[
\begin{align*}
 &a \\
 &\quad \quad \quad \quad b \\
 &\quad \quad \quad \quad \quad \quad J_b \\
 &\quad \quad \quad \quad \quad \quad I_b \\
 &c \\
 &\quad \quad \quad \quad I_a \\
 &\quad \quad \quad \quad J_a
\end{align*}
\]
Another similarity

Dichromatic number of H
The minimum number of acyclic parts H can be partitioned into

H is an adjusted interval digraph (without the loops)
Linear time algorithm for the dichromatic number

Hernandez-Cruz and H, 2014

Directed cycles
Each directed cycle in an adjusted interval digraph contains a digon

\[\begin{align*}
I_a &\quad J_b \\
I_b &\quad J_a
\end{align*} \]

Pavol Hell, Simon Fraser University | Interval-like Graphs and Digraphs
Another similarity

Dichromatic number of H

The minimum number of acyclic parts H can be partitioned into

H is an adjusted interval digraph (without the loops)

Linear time algorithm for the dichromatic number

Hernandez-Cruz and H, 2014

Directed cycles

Each directed cycle in an adjusted interval digraph contains a digon

![Diagram](image)
Interval-like graphs

Reflexive graphs

interval graphs
Interval-like digraphs

Reflexive digraphs

symmetric

adjusted interval digraphs
The World of Digraphs

Interval-like digraphs

Digraphs

symmetric

reflexive

adjusted interval digraphs

2DR
Interval-like digraphs
Interval-like digraphs

Min-orderable digraphs?
Interval-like digraphs

Min-orderable digraphs?

- Geometric representation?
- Obstruction characterization?
- Polynomial recognition algorithm?
The following are equivalent

- H has a min ordering
- H is a bi-arc digraph
- H has no invertible circuit (testable in $O(n^4)$)

H+Rafiey 2016
A bi-arc digraph H

Representable by two consistent families of circular arcs

$$I_v, \ v \in V(H), \text{ and } J_v, \ v \in V(H),$$

$$uv \in E(H) \iff I_u \cap J_v = \emptyset$$
A bi-arc digraph H

Representable by two *consistent* families of circular arcs

$$I_v, \ v \in V(H), \text{ and } J_v, \ v \in V(H),$$

$$uv \in E(H) \iff I_u \cap J_v = \emptyset$$
The following are equivalent:

- H has a min ordering
- H is a bi-arc digraph
- H has no invertible circuit

H+Rafiey 2016
The following are equivalent

- H has a min ordering
- H is a bi-arc digraph
- H has no invertible circuit

H+Rafiey 2016

Invertible circuit
Bi-Arc Digraphs

Bi-arc digraphs

```
<table>
<thead>
<tr>
<th>reflexive</th>
<th>symmetric</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

adjusted interval digraphs

2DR
Special cases of bi-arc digraphs

- Reflexive and symmetric digraphs
- Interval graph

Same order: 1, 1, 2, 3, 2, 3
Bi-Arc Digraphs

Special cases of bi-arc digraphs

- reflexive and symmetric digraph \(\iff\) interval graph

Same order: 1, 1, 2, 3, 2, 3
Special cases of bi-arc digraphs

- reflexive and symmetric digraph \iff interval graph

Same order: 1, 1, 2, 3, 2, 3
Special cases of bi-arc digraphs

- reflexive and symmetric digraph \iff interval graph

- reflexive digraph \iff adjusted interval digraph

Same order: 1, 1, 2, 3, 2, 3
Special cases of bi-arc digraphs

- reflexive and symmetric digraph \iff interval graph

 Same order: 1, 1, 2, 3, 2, 3

- reflexive digraph \iff adjusted interval digraph

- bigraph \iff 2DR graph

Pavol Hell, Simon Fraser University
Circular Arc Graphs

Circular arc graph

Vertices v can be represented by circular arcs l_v, so that

$$v \sim w \iff l_v \cap l_w \neq \emptyset$$
Circular arc graph

Vertices \(v \) can be represented by circular arcs \(I_v \), so that

\[
 v \sim w \iff I_v \cap I_w \neq \emptyset
\]

Hadwiger + Debrunner + Klee 1964

When is \(H \) is a circular arc graph?
Circular arc graph

Vertices v can be represented by circular arcs l_v, so that

$$v \sim w \iff l_v \cap l_w \neq \emptyset$$

Hadwiger + Debrunner + Klee 1964

When is H is a circular arc graph?

Difficulties with circular arc graphs
Circular arc graph

Vertices v can be represented by circular arcs I_v, so that

$$v \sim w \iff I_v \cap I_w \neq \emptyset$$

Hadwiger + Debrunner + Klee 1964

When is H is a circular arc graph?

Difficulties with circular arc graphs

- Helly property fails
Circular arc graphs

Vertices v can be represented by circular arcs I_v, so that

$$v \sim w \iff I_v \cap I_w \neq \emptyset$$

Hadwiger + Debrunner + Klee 1964

When is H is a circular arc graph?

Difficulties with circular arc graphs

- Helly property fails
- May have exponentially many maxcliques
Circular arc graph

Vertices v can be represented by circular arcs I_v, so that

$$v \sim w \iff I_v \cap I_w \neq \emptyset$$

Hadwiger + Debrunner + Klee 1964

When is H is a circular arc graph?

Difficulties with circular arc graphs

- Helly property fails
- May have exponentially many maxcliques
- Not all perfect
Recognition algorithms

- \(O(n^3) \) Tucker 1980
- \(O(n^2) \) Eschen+Spinrad 1993, Nussbaum 2007
- \(O(m+n) \) McConnell 2003, Kaplan+Nussbaum 2011

Certifying algorithm?

Pavol Hell, Simon Fraser University

Interval-like Graphs and Digraphs
Circular Arc Graphs

Recognition algorithms

- $O(n^3)$ Tucker 1980

Interval-like Graphs and Digraphs
Circular Arc Graphs

Recognition algorithms

- $O(n^3)$ Tucker 1980
- $O(n^2)$ Eschen + Spinrad 1993, Nussbaum 2007
Circular Arc Graphs

Recognition algorithms

- $O(n^3)$ Tucker 1980
- $O(n^2)$ Eschen+Spinrad 1993, Nussbaum 2007
- $O(m + n)$ McConnell 2003, Kaplan+Nussbaum 2011
Recognition algorithms

- $O(n^3)$ Tucker 1980
- $O(n^2)$ Eschen+Spinrad 1993, Nussbaum 2007
- $O(m + n)$ McConnell 2003, Kaplan+Nussbaum 2011

Certifying algorithm?
Forbidden substructure characterizations

- Proper CAGs
 - Tucker 1969
- Unit CAGs
 - Tucker 1969
- Co-bipartite CAGs
 - Tucker 1969, H+Huang 1999
- Helly CAGs
- Normal Helly CAGs
 - Cao-Grippo-Safe 2014
- Diamond-free CAGs, or paw-free CAGs, or \(P_4 \)-free CAGs, or claw-free chordal CAGs
 - Bonomo+Duran+Grippo+Safe 2013
- \(K_5 \)-free CAGs
 - Francis+H+Stacho 2014

For a co-bipartite graph \(H \): Circular arc \(\iff \) \(H \) has no induced \(C > 4 \) and no edge-asteroid.
Forbidden substructure characterizations

- Proper CAGs Tucker 1969
Forbidden substructure characterizations

- **Proper CAGs** Tucker 1969
- **Unit CAGs** Tucker 1969

For a co-bipartite graph H, circular arc $\iff H$ has no induced C_4 and no edge-asteroid.
Forbidden substructure characterizations

- **Proper CAGs** Tucker 1969
- **Unit CAGs** Tucker 1969
- **Co-bipartite CAGs** Tucker 1969, H+Huang 1999
- **Helly CAGs** Joeris+McConnell+Spinrad 2006, Lin+Szwarcfiter 2006
- **Normal Helly CAGs** Cao-Grippo-Safe 2014
- **Diamond-free CAGs**, or **paw-free CAGs**, or **P$_4$-free CAGs**, or **claw-free chordal CAGs** Bonomo+Duran+Grippo+Safe 2013
- **K$_5$-free CAGs** Francis+H+Stacho 2014

For a co-bipartite graph H circular arc $\iff H$ has no induced C_4 and no edge-asteroid
Forbidden substructure characterizations

- **Proper CAGs** Tucker 1969
- **Unit CAGs** Tucker 1969
- **Co-bipartite CAGs** Tucker 1969, H+Huang 1999
- **Helly CAGs** Joeris+McConnell+Spinrad 2006, Lin+Szwarcfiter 2006
Circular Arc Graphs

Forbidden substructure characterizations

- Proper CAGs Tucker 1969
- Unit CAGs Tucker 1969
- Co-bipartite CAGs Tucker 1969, H+Huang 1999
- Normal Helly CAGs Cao-Grippo-Safe 2014
Forbidden substructure characterizations

- **Proper CAGs** Tucker 1969
- **Unit CAGs** Tucker 1969
- **Co-bipartite CAGs** Tucker 1969, H+Huang 1999
- **Helly CAGs** Joeris+McConnell+Spinrad 2006, Lin+Szwarcfiter 2006
- **Normal Helly CAGs** Cao-Grippo-Safe 2014
- diamond-free CAGs, or paw-free CAGs, or P_4-free CAGs, or claw-free chordal CAGs Bonomo+Duran+Grippo+Safe 2013
Forbidden substructure characterizations

- **Proper CAGs** Tucker 1969
- **Unit CAGs** Tucker 1969
- **Co-bipartite CAGs** Tucker 1969, H+Huang 1999
- **Helly CAGs** Joeris+McConnell+Spinrad 2006, Lin+Szwarcfiter 2006
- **Normal Helly CAGs** Cao-Grippo-Safe 2014
- **diamond-free CAGs, or paw-free CAGs, or \(P_4 \)-free CAGs, or claw-free chordal CAGs** Bonomo+Duran+Grippo+Safe 2013
- **\(K_5 \)-free CAGs** Francis+H+Stacho 2014
Circular Arc Graphs

Forbidden substructure characterizations

- **Proper CAGs** Tucker 1969
- **Unit CAGs** Tucker 1969
- **Co-bipartite CAGs** Tucker 1969, H+Huang 1999
- **Helly CAGs** Joeris+McConnell+Spinrad 2006, Lin+Szwarcfiter 2006
- **Normal Helly CAGs** Cao-Grippo-Safe2014
- **diamond-free CAGs, or paw-free CAGs, or \(P_4 \)-free CAGs, or claw-free chordal CAGs** Bonomo+Duran+Grippo+Safe 2013
- **\(K_5 \)-free CAGs** Francis+H+Stacho 2014

For a co-bipartite graph \(H \)

\(H \) circular arc \(\iff \overline{H} \) has no induced \(C_4 \) and no edge-asteroid
An anchored invertible pair

Francis+H+Stacho 2015
An anchored invertible pair

UNDER THE RIGHT INTERPRETATION AND ASSUMPTIONS

Francis+H+Stacho 2015
\(\mathcal{H} \) has no twins and universal vertices

- **Twins**
 - Same neighbours

- **Universal vertex**
 - Adjacent to all vertices
Each edge of H has a "type"

Type of edge uv

- Type i if $N[u] \subseteq N[v]$ ("inclusion")
- Type o if each u, v has a private neighbour ("overlap")
If \(H \) has a circular arc representation, then it has one corresponding to the labels.
If H has a circular arc representation, then it has one corresponding to the labels.

Hsu 1995
Extend H to include "complements"
Extend H to include ”complements”

Circularly paired vertices u, v

- u and v are not adjacent
- $x \not\sim u \implies xv$ is an i-edge, and
- $x \not\sim v \implies xu$ is an i-edge
Extend H to include "complements"

Circularly paired vertices u, v

- u and v are not adjacent
- $x \not\sim u \implies xv$ is an i-edge, and
- $x \not\sim v \implies xu$ is an i-edge
Extend H to include "complements"

Circularly paired vertices u, v

- u and v are not adjacent
- $x \not\sim u \implies xv$ is an i-edge, and
- $x \not\sim v \implies xu$ is an i-edge
Extend H to include "complements"

Circularly paired vertices u, v
- u and v are not adjacent
- $x \not\sim u \implies xv$ is an i-edge, and
- $x \not\sim v \implies xu$ is an i-edge

Circular completion of H
If u is not circularly paired in H, we add a suitable new vertex \overline{u}
$(x \sim \overline{u} \iff xu$ is not an i-edge)
Extend H to include "complements"

Circularly paired vertices u, v
- u and v are not adjacent
- $x \not\sim u \implies xv$ is an i-edge, and
 $x \not\sim v \implies xu$ is an i-edge

Circular completion of H
If u is not circularly paired in H, we add a suitable new vertex \overline{u}
$(x \sim \overline{u} \iff xu$ is not an i-edge)

Facts
Each H has a unique circular completion H^+
H is a circular arc graph $\iff H^+$ is a circular arc graph
Review all assumptions

- H has no twins and no universal vertices
- edges of H are labeled by their type i or o
- H is circularly complete
Review all assumptions

- H has no twins and no universal vertices
- edges of H are labeled by their type i or o
- H is circularly complete

Obstruction to circular arc graphs

- Two graphs showing the obstruction
- Vertices u, v, and w
If it could be represented

\[\begin{align*}
 &a \quad b \\
 \quad \quad c
\end{align*}\]
Delta Triangles

If it could be represented

\[\text{Diagram: } a \rightarrow b, \quad b \rightarrow c, \quad c \rightarrow a \]
Delta Triangles

If it could be represented

Diagram with vertices a, b, and c arranged in a triangle on the left, and a directed cycle on the right with vertices a, b, and c.
If it could be represented
Delta Triangles

If it could be represented

```
a b  o
     |
      |
     c
```

```
a a
 b
 c
```

Pavol Hell, Simon Fraser University
Interval-like Graphs and Digraphs
If it could be represented
Delta Triangles

If it could be represented

Diagram showing a triangle with vertices labeled a, i, b, and a circle labeled a, c, b.
If it could be represented

\begin{align*}
 a & \\
 o & i \\
 c & b \\
 o & \quad \quad o \\
 c & \\
 b & \\
\end{align*}

Pavol Hell, Simon Fraser University

Interval-like Graphs and Digraphs
Delta Triangles

\[c \text{ must be on opposite side of where } a \text{ meets } b \]

\[\text{NOT ALL } o \]
Necessity

If it could be represented
Necessity

If it could be represented

Necessity
Necessity

If it could be represented
The Structural Characterization

Anchored invertible pair

Dashed line = non-edge or o-edge
Each triangle with a horizontal edge is a delta triangle
The Structural Characterization

Anchored invertible pair

Dashed line = non-edge or o-edge
Each triangle with a horizontal edge is a delta triangle
Anchored invertible pair

Dashed line = non-edge or o-edge
Each triangle with a horizontal edge is a delta triangle
The Structural Characterization

Assumptions

- H has no twins and no universal vertices
- edges of H are labeled by their type i or o
- H is circularly complete

Theorem

H is a circular arc graph \iff it has no anchored invertible pair

Francis+H+Stacho 2015
A Certifying Algorithm

Producing an anchored invertible pair

Delete universal vertices
Delete one of each pair of twins
Run a standard recognition algorithm
If a representation is found, it is the certificate
If no representation is found
Compute the edge-labels
Compute the circular completion
Find an anchored invertible pair (via an auxiliary graph)
A Certifying Algorithm

Producing an anchored invertible pair

- Delete universal vertices
A Certifying Algorithm

Producing an anchored invertible pair

- Delete universal vertices
- Delete one of each pair of twins
A Certifying Algorithm

Producing an anchored invertible pair

- Delete universal vertices
- Delete one of each pair of twins
- Run a standard recognition algorithm
 If a representation is found, it is the certificate
A Certifying Algorithm

Producing an anchored invertible pair

- Delete universal vertices
- Delete one of each pair of twins
- Run a standard recognition algorithm
 - If a representation is found, it is the certificate
 - If no representation is found
 - Compute the edge-labels
 - Compute the circular completion
 - Find an anchored invertible pair (via an auxiliary graph)